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THE VACUUM O F  SPACE 

by Edmond E. Bisson 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

INTRODUCTION 

The lubrication and bearing problems of the  space age a re  many and 

varied. These problems include exposure t o  cer ta in  pecul ia r i t i es  of 

space such as (1) a very low ambient pressure, ( 2 )  a radiation environ- 

ment, (3) the  absence of a gravitional f i e ld ,  and (4) the presence of 

atomic species other than the normally encountered molecular species. 

The various problems, t h e i r  re la t ive  importance, and some indication of 

research i n  these various areas are  discussed i n  considerable detail  i n  ~ 

references 1 t o  9. One of the major problems of any type of spacecraft 

involves operation of mechanisms i n  the vacuum of outer space, For 

example, such components as horizon seekers, sun or star finders, and 

radar antennae are involved. 

the high vacuum of outer space unless hermetically sealed systems are 

These components must normally operate i n  
I 

used; these sealed systems incorporate considerable complexity and weight. 

The various pecul ia r i t i es  of t he  environment of space a l l  contribute 

t o  the lubrication and bearing problems. For example, the low-pressure 

environment contributes t o  rapid evaporation of the l iquid o r  semi-solid 
r 

grease lubricants normally employed. 

the lack of oxygen. A s  i s  wellknown, lubrication ordinar i ly  takes place 

Other problems arise because of 
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by means of contaminating films between the s l iding or  ro l l ing  surfaces. 

-These contaminating f i l m s  can be liquids, such as the common l iquid 

lubricants, o r  so l id  f i l m s  of low shear strength. The lubrication 

function is, w i t h  many metals, strongly influenced by the presence o r  

absence of oxide f i l m s  on these metals. The surface oxides frequently 

ac t  as protective f i l m s  and, i n  some cases, contribute t o  the f ina l  

surface Films through e i ther  chemical reaction or  chemisorption. 

One of the problems at  a l t i tudes  higher than 55 miles involves the 

f ac t  t ha t  oxygen and nitrogen do not ex is t  as the ordinary molecular 

species but rather i n  the atomic o r  ionic s ta te .  The reaction ra tes  

between most metals and atomic oxygen are  markedly different  from those 

w i t h  molecular oxygen. The influence of  t h i s  different  reaction rate on 

the f r i c t ion  and lubrication process in  vacuum is unknown a t  the present 

t i m e .  

are the principal species present. 

A t  a l t i tudes  greater than 800 miles, atomic hydrogen and helium 

The main environmental change between space and the Earth's surface 

is, of  course, t ha t  of pressure level. 

Earth's atmosphere is  estimated a t  approximately 

absolute pressure in  in t e r s t e l l a r  space i s  estimated at approximately 

The absolute pressure outside the 

Torr,  while the 

Torr. Figure 1 shows pressure as a function of alt i tude.  A t  the  

very low pressure levels  (where a gaseous atmosphere i s  absent) the  t e m -  

perature levels w i l l  normally be dictated by radiation. 

absorbed by radiation from any object tha t  the  mechanism "sees" and the 

mechanism w i l l ,  i n  turn, re jec t  heat t o  outer space by radiation. 

mechanisms w i l l  have different  temperature levels depending upon these 

re la t ive  ra tes  of heht gain and loss. 

Heat w i l l  be 

Various 

It is important here t o  note tha t  
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* evaporation from surfaces i s  an exponential function of temperature; i n  

.consequence, t he  actual  temperature of the mechanisms is  important i n  

t h i s  respect. 

Exact duplication o f  the various conditions existing i n  space is  

For example, the combinalhon of radiation flux, extremely d i f f icu l t .  

pressure level, and proper concentration of atoms of  the various gases is  

d i f f i c u l t  t o  ackiieve. Some of these conditions can be simulated, however, 

i n  such a manner tha t  t h e i r  re la t ive  effects  can be measured or estimated. 

In  order t o  conduct meaningful experiments i n  a vacuum chamber, the 

following two requirements must be met: (I)  a suff ic ient ly  low absolute 

pressure, and ( 2 )  precise knowledge of the gaseous species present. 

normal radiation levels of the space environment a re  not suff ic ient  t o  

produce any damage t o  mechanical components of lubrication devices o r  

even t o  conventional o i l  o r  greases. 

The 

The first  requirement is  predicated on the  necessity f o r  simulating 

a space environment with respect t o  evaporation of  materials and f o r  

reducing oxygen concentration t o  such a leve l  tha t  formation of  oxide 

films i n  the t i m e  period of the experiment is extremely unlikely. It 

w i l l  be recalled that oxide films can have an appreciable e f fec t  on the  

f r i c t ion  and lubrication process. Figure 2 is  included t o  show the time 

required t o  form a hypothetical f i lm of FeO on iron; t h i s  f i l m  is 1 angstrom 

thick. 

at oxygen pmssiwes. as low a ~ - l O ' ~  Torr. 

It w i l l  be noted 'thaty ;at 25'; C ,  FeO forpls on ipon i n  1 minute even 

HenBe, Bxperim&nka&, bt 

t&oh and iracum must be obtained at oagen  pressure levels  lower Chan,.lO"' 

Torr. For example, conducting f r i c t i o n  experiments at  oxygen ppessure levels  

$ T o r r  is desirable, because & f i l m  of FeO I angstrom thick. 

would require from 1 hour t o  1 day t o  form under these conditions. 
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The second requirement (that of precise knowledge of the  gaseous 

species present) is  the necessity t o  know how closely the environment 

of space i s  approached; t h i s  requirement maybe obtained by the  use of a 

mass spectrometer. 

obtained (ref. 10) from some of the f r i c t i o n  studies conducted a t  the  

Such data i n  a vacuum f r i c t ion  apparatus have been 

NASA laboratories. 

figure 3. The resu l t s  show tha t  many species are present with ion 

pumping, f o r  example, hydrogen (2), nitrogen (14) , oxygen ( 16) , hydroxyl 

(17), water (18), carbon monoxide (28), nitrogen ( 2 8 ) ,  and carbon 

dioxide (44). 

Data representative of these studies are shown i n  

(The numbers i n  parenthesis are the r a t i o  o f  molecular 

weight t o  charge.) Figure 3 shows the reduction of detectable gases by 

various techniques t o  the point where only hydrogen i s  present when 

liqurid helium i s  used t o  cryopump the chamber after bakeout a t  93' C 

and gaseous nitrogen purge. 

EVAPORATION RATES IN VACUUM 

The Langmuir equation for  rate of  evaporation i s  G = L J ~  17.14 

where G i s  the r a t e  of vaporization (g/( sq  cm) ( sec) )  , P is  vapor 

pressure (mm Hg), M is  molecular weight, and T is  temperature ( O K ) .  

The vapor-pressure equation can be writ ten as follows: > 
-L/W P = Ce 

where C is  a constant, L is  the heat of  vaporization, and R i s  the  

gas constant. The Langmuir equation is  based on the assumption that a l l  

the atoms tha t  evaporate from the surface area lost permanently; tha t  is  

none of  the atoms are ref lected back t o  the surface t o  permit possible 

recondensation. The Langmuir equation thus yields the maximum rate of 

' loss.  
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O i l s  and greases are normally used as lubricants. A t  low pressures 

and at  temperatwe extremes, metals and inorganic compounds a re  of 

in te res t  f o r  use as lubricants. The evaporation rates of these materials 

i n  vacuum are needed. 

O i l s  and Greases 

The evaporation rates f o r  various o i l s  and greases were determined 

under vacuum conditions (approx. 

Buckley, Swikert, and Johnson (ref. 6). 

figure 4. 

Torr) a t  various temperatures by 

These resu l t s  are presented in  

Mil-L-7808 is the synthetic lubricant i n  common use i n  air- 

c ra f t  turbine engines; mineral o i l s  of  two different  viscosi t ies  are  

included i n  figure 4 as w e l l  as greases of  various compositions. 

~n arb i t ra ry  l i m i t  o f  10-7 gram per square centimeter per second 

w a s  set on the evaporation rate; values greater than t h i s  were considered 

excessive. 

a boundary lubricating f i l m  of l iquid 20 molecular layers thick w i l l  

While t h i s  choice was arbitrary,  it is based on the f ac t  t ha t  

evaporate i n  less  than 1 minute. 

i n  figure 4 are sat isfactory at  temperatures of 90' c or greater. 

On th i s  basis,  none of the  materials 

Metals 

Evaporation rates f o r  various metals were determined i n  vacuum over 

the range of temperatures from 13O t o  540° C (ref. 6). The resu l t s  of 

t h i s  investigation are presented i n  figures 5(a)  and' (b] . 
i n  figure 5(a)  a re  calculated evaporation rates based on measwed vapor- 

pressure data from the l i t e ra ture .  These calculated curves are  the  s o l i d  

lines. 

Also  presented 

The experimental data of the investigation of reference 6 are 



-6- 
< 

shown as the individual data points. 

agreement between calculated and measured evaporation-rate data. 

basis of the evaporation-rate data of figure 5(a) and (b);,-a-nuhber of 

metals are of interest including gallium (5(b)), which will be discussed 

In general, there is very good 

On the 

in more detail later. 

Inorganic Coatings 

In order to interpret the evaporation rates of solid-film lubricant 

coatings, evaporation-rate data were obtained for the constituents of 

the coating as well as for the final coatings themselves. 

compressed disks of various lubricant coating constituents are presented 

in figure 6. 

that some of the materials (such as NiF and P b O )  dissociated at the higher 

temperatures. 

Tl?e data for 

One important result from these experiments was the finding 

The evaporation rates for M0S2, WS2, CaF2, and BaFZ at temperatures 

from 13' to 540' C are shown in figure 7. In general the evaporation 

rates of all materials in vacuum are quite low, even at elevated temper- 

atures. These materials, therefore, appear to be the most stable of the 

inorganic substances examined by the authors of reference 6. Evaporation 

rates were also obtained for finished MoS2 coatings with various binders 

(ceramic, silicon resin, and phenolic epoxy). 

evaporation-rate experiments showed that the rate for all coatings was 

The results of these 

relatively low. 

Polymers 

Evaporation rates of other materials were checked also. For example, 

the evaporation rate of Teflon was reasonably low at temperatures below 
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the decomposition temperature of approximately 288' C. A recent polymer 

development that appears very attractive for space lubrication applica- 

tions is that of the polyamides, 

tion rates and have good friction and wear characteristics in vacuum 

(ref. 11). 

These materials have very low evapora- 

FRICTION AND WEAR IN VACUUM 

As previously mentioned, one of the most important adverse effects 

of the low pressures in space is the removal of surface films by evapor- 

ation. If the surfaces become sufficiently clean, severe adhesion and 

welding can occur between sliding surfaces. 

conditions will have a tendency to rub together in their "virgin" states, 

Since materials under such 

it would be desirable to avoid this condition where possible by providing 

a contaminating film with lubricants of various types. 

Unlubricated Metals 

Friction and wear experiments were conducted in air and in vacuum 

with five alloy combinations in the unlubricated state. 

shown in figure 8. 

The results are 

The results for the iron-base alloy 52100 sliding on 

52100 appear to contradict the results of reference 12, which shows that 

operation of metals in vacuum increased the friction coefficient markedly. 

It should be noted that the specimens in these experiments were not out- 

gassed and, hence, had some oxide films on them. The reduction in 

friction coefficient under vacuum conditions for the 52100 specimens 

may possibly be the result of the formation of oxides of iron lower than 

the normal Fe2,03; these lower oxides are FeO and Fe304. 

oxides have been shown (ref. 13) to be beneficial from the standpoint of 

These lower 
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f r i c t ion  and wear, Figure 9(a)  shows the f r i c t ion  af 52100 s l iding on 

52100 as a function of  the  ambient pressure i n  the chamber. 

was varied from atmospheric t o  2X10'7 Torr. 

This pressure 

The f r i c t ion  coefficient at  

atmospheric pressure is approximately 0.45 and decreases t o  a minimum of 

approximately 0 .2  a t  

a t  2 . 0 ~ 1 0 ' ~  Torr. 

beneficial  iron oxides FeO and Fe3O4 a t  the intermediate pressure levels. 

A t  pressure levels of loo t o  10-6 Torr,  the beneficial  oxides would have 

a tendencyto form because of the limited ava i lab i l i ty  o f  oxygen atoms. 

The resu l t s  shown i n  figure 9(a) were l a t e r  confirmed by Reiehenbach, 

e t  al. (ref. 14) fo r  different  s t e e l  specimens over the same pressure 

Torr,  after which it increases t o  about 0.38 

These resu l t s  a re  explained by the formation of the 

range. 

is  suff ic ient  t o  form the beneficial ,  lower iron oxides. Hence, experi- 

ments were made with lower concentrations of  oxygen. 

Even a t  a pressure level of Torr ,  the  oxygen concentration 

Figure 9(b) shows the resu l t s  of experiments conducted on 52100 

s l iding against 52100 under a pressure of 

pumping, 

chamber condensed the condensible gases such as nitrogen and oxygen. 

t h i s  manner, the authors of  reference 6 f e l t  t ha t  the  ava i lab i l i ty  of 

oxygen atoms would be markedly reduced. 

bel ief .  

increase from the i n i t i a l  value of 0.3 t o  the value of about 1.0 a t  30 

minutes. 

value of  about 4, after which it continued r i s ing  u n t i l  the  specimens 

welded so  firmly together that the drive motor of  the  mechanism w a s  

Torr obtained by cryo- 

In  t h i s  case, a liquid-helium condensing c o i l  inside the vacuum 

In  

Figure 9(b) confirms t h e i r  

Friction coefficient as a function of  time showed a slight 

A t  30 minutes, the f r i c t ion  coefficient rose markedly t o  a 
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stal led.  The i n i t i a l  low f r i c t i o n  coefficient i s  believed t o  be the  result  

of the presence of the beneficial  low oxides of i ron (FeO and Fe304). 

time during which the f r i c t i o n  coefficient remained re la t ive ly  low (i. e. ,  

l e s s  than 1.0) represents the time required t o  wear these beneficial  

The 

oxides from the surface. A f t e r  the oxide f i l m  has been worn from the 

surface, it could not re-form because of the limited ava i lab i l i ty  of 

oxygen atoms. Hence, complete and t o t a l  failure of surfaces took place. 

Crystal Structure 

Recent work i n  vacuum lubrication at the  NASA Lewis Research 

laboratories indicates a marked difference i n  f r i c t i o n  and wear between 

metals of the cubic and hexagonal c rys ta l  structures ( re f .  15). Figure 

10 shows the atomic arrangement i n  typical  face-centered-cubic and hexa- 

gonal c rys ta l  l a t t i ce s .  Polycrystalline metals are agglomerates of 

c rys t a l l i t e s  t ha t  have these basic forms; when welding occurs between 

two metals, the weld is  made up of these crystals.  

i n  the welds shear, they do so along d i s t inc t  planes, and the required 

When the crystals  

shear force depends on the  plane being sheared. Shear forces i n  cubic 

crystals  are  normally greater than corresponding shear forces i u i  hexa- 

gonal crystals  because of work hardening o f  cubic crystals  and orienta- 

t ion  on planes o f  easy s l i p  i n  hexagonal metals. 

shear forces a re  usually the least on the  basal  plane ( i . e ? ,  when shear 

I n  hexagonal crystals,  

occurs i n  a plane pa ra l l e l  t o  the  hexagons). 

i l l u s t r a t ed  i n  figure 11, which shows the top hexagonal plane of the 

This shearing process i s  

c rys ta l  displaced from the  normal axis during the  shear deformation processd 
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A s  surfaces are moved with respect t o  one another, deformation, shear 

separation, and recrystal l izat ion occur as a continuing process. 

The data i n  figure 1 2  showed the difference i n  force required t o  

shear metals of  cubic and hexagonal structures. The crys ta l  form of 

cobalt at  normal temperatures is hexagonal. However, cobalt transforms 

from the hexagonal t o  the cubic s t ructure  when heated above 400' C. A 

marked increase i n  f r i c t ion  is shown t o  accompany t h i s  c rys ta l  trans- 

formation (f ig .  12) .  A t  low temperatures, the s l iding is of hexagonal 

cobalt on hexagonal cobalt. 

o f  cubic cobalt on cubic covalt. 

A t  the higher temperatures, the s l iding is 

The t rans i t ion  from hexagonal t o  cubic 

i s  shown a t  less than 4000 C because f r i c t iona l  heating caused the surface 

temperatures t o  be somewhat higher than the bulk metal temperatures 

measured. Adhesive wear rate w a s  about 100 times greater for  the cubic 

cobalt than for the hexagonal cobalt as indicated by the t w o  wear ra tes  

shown i n  figure 12. Furthermore, at  the highest temperature, complete 

welding of  the specimen occurred. These data suggest t ha t  s l iding metals 

should be used in  the hexagonal c rys ta l  form over the en t i re  operating 

temperature range. 

Additional inquiry showed tha t  the  shear force i n  hexagonal crystals  

varies with the  re la t ive  spacing of the  atoms within the crystal .  

particular,  the shear force is  controlled by the r a t i o  of  the distance 

c ( the spacing between hexagonal planes) t o  the distance a (the 

In 

spacing between adjacent atoms i n  the hexagon). 

hexagonal c rys ta l  structures have different values of c/a. Figure 13 

Various metals with 

shows the  variations of f r i c t i o n  i n  vacuum fo r  some of  these metals. 
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The coefficient of f r i c t ion  declines w i t h  increasing c/a, and those 

metals that  showed l o w  f r i c t i o n  gave no evidenee of gross surface welding. 

O f  the various metals i n  t h i s  study, cobalt and titanium are more 

commonly used and available and, hence, are of the greatest pract ical  

interest .  

o r  gall ing and otherwise having very poor f r i c t ion  properties. 

other hand, cobalt a l loys have been used i n  bearings? but usually i n  

alloys with predominately cubic structure,  

c rys ta l  structure e f fec ts  suggested tha t  improved f r i c t ion  properties 

could be obtained if  cobalt and titanium were alloyed i n  such a way as 

t o  s t ab i l i ze  the hexagonal structure over a greater range of  temperatwe 

and t o  increase the  c/a l a t t i c e  r a t i o  fo r  titanium. This i s  necessary 

f o r  titanium because i t s  poor f r i c t ion  properties can be related t o  

shear and s l i p  mechanisms which, i n  turn, can be related t o  

r a t i o  (ref. 16). 

Titanium is w e l l  known as a metal subject t o  severe welding 

On the  

The preceeding study on 

c/a l a t t i c e  

Simple binary alloys of titanium with e i ther  t i n  o r  aluminum were 

found t o  provide the  desired s t ruc tura l  characterist ics.  

f r i c t i o n  and l a t t i c e  r a t i o  f o r  a ser ies  of titanium-aluminum and titanium- 

t i n  alloys. 

number of  resul ts :  (1) higher c/a ra t ios ,  ( 2 )  great ly  reduced f r ic t ion ,  

and (3) minimized surface f a i lu re  tendencies. 

Figure 14 shows 

Increasing the  percentage of aluminum o r  t i n  produeed a 

Influence of Other Physical Properties 

There a re  other physical properties o f  metals t ha t  influence 

f r i c t ion  and wear behavior i n  a vacuum environment. These include 

order-disorder reactions, orientation of  c rys ta l l i t es ,  and chemical 
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a f f i n i t y  of  s l id ing  couples. 

copper-gold alloys exhibit  superior f r i c t ion  properties when compounds 

I n  reference 17  it has been shown that 

of these two elements are i n  the  ordered state, 

crystals  of  various metals (CJO, Ti ,  Be, W, and Cu) and inorganic com- 

Studies with s ingle  

pounds have shown tha t  crystallographic planes and directions of greatest  

atomic density exhibit  the lowest coefficients of  f r i c t ion  when the  clean 

surfaces are  s l iding i n  vacuum. Further, f o r  metals s l iding on inorganic 

compounds, where chemical reaction between the  metal and the  inorganic 

compound can occur, shear and f r i c t ion  maybe dictated by the type of 

bonds formed. 

So lid-Film Lubricant Coatings 

Friction and wear experiments were conducted on a number o f  solid- 

film lubricant coatings (ref. 6). The f r i c t ion  and wear resu l t s  for  

various MoS2 films i n  vacuum are presented i n  figure 15. From these 

resul ts ,  it i s  apparent t ha t  the  binder material plays some ro le  i n  the 

f r i c t ion  and wear process. 

ceramic-bonded coatings, showed good results.  The ceramic-bonded coating 

is, however, basical ly  a high-temperature coating. 

A l l  coatings, with the  exception of the 

Figure 1 6  shows the  results of experiments with other lubricant 

coatings, These coatings include two coatings developed par t icular ly  for  

high temperature use i n  a i r  (lead oxide - s i l icon  dioxide (WO-Si02), and 

calcium fluoride (CaF2). 

metals: t i n ,  gold, lead, and s i lver ,  All coatings have been used as 

Coatings i n  figure 1 6  a lso encompass the  s o f t  

lubricants under vacuum conditions i n  the  past. All coatings showed 

reasonable f r i c t ion  coefficients, although the  wear is  considerably higher 

than w a s  the  wear fo r  the  MoSz coatings of figure 15. 
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G a l l i u m  Films 

One of the  materials of promise as a possible lubricant i n  the  vacuum 

environment of space i s  gallium (ref .  18). 

a l iquid lubricant should (1) have low vapor pressure in  order that it may 

For use as a space lubricant, 

remain on the  surface f o r  long periods of t i m e ,  ( 2 )  be l iquid over a 

broad temperature range, and (3) have good weeting properties. 

possesses a l l  these characterist ics;  it has very l o w  vapor pressure t o  

540' C (as shown i n  f ig .  5(b)), has a liquidus range of 30° t o  1982O C, 

and w i l l  w e t  nearly a l l  surfaces. 

G a l l i u m  

One major problem associated with 

ellium as a lubricant is i ts  extremely reactive nature toward other 

metals; it has a strong tendency t o  form alloys o r  so l id  solutions. 

G a l l i u m  films can be applied t o  surfaces i n  a number of ways. In  

order t o  study the  effects  of application techniques on f r i c t ion  and 

wear, the  first experiments with gallium were conducted i n  air. 

results of these experiments are shown i n  f igure 17, which compares 

The 

f r i c t ion  and wear of  fou r  different gallium films w i t h  each other and with 

an unlubricated specimen. O f  these various films, the pretreated film 

appears most practical;  the 260° C pretreatment w a s  chosen because of  

i t s  be t t e r  results.  

gallium films w i l l  refer t o  the 260' C pretreatment, 

All fur ther  experimental resu l t s  on pretreated 

Results of  experiments i n  vacuum w i t h  various unlubricated material 

combinations and with the  same combinations lubricated w i t h  a pretreated 

g a l l i u m  surface film are presented i n  figure 18. These experiments were 

conducted a t  a pressure l eve l  of lom8 Torr. 

a l l  the  material combinations, wear and f r i c t ion  with a pretreated gallium 

The re su l t s  show that ,  fo r  
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surface film are much less than fo r  the  unlubricated combination. For 

example, with the  combination 440-C on 4404, wear with the  gallium 

lubricated specimens i s  only 1/10,000 t ha t  of the  unlubricated specimen. 

ROLLING-ELFSIENT BEARINGS IN V A W  

The rolling-element bearing appears par t icular ly  promising for  use 

i n  space where the problem of lubrication can be c r i t i c a l  because t h i s  

type of bearing has very l i t t l e  s l id ing  and, therefore, inherently 

requires very l i t t l e  lubricant. 

s l iding as w e l l  as ro l l ing  occurs i n  the contact region between the  

With t h i s  type of  bearing, however, 

ro l l ing  elements and the  races. Therefore, lubrication must be supplied 

f o r  adequate and re l iab le  operation. 

Since the rolling-element bearing requires very l i t t l e  lubricant 

for  lubrication, it is possible for  short-time applications t o  use such 

bearings lubricated with e i ther  l iquids o r  greases, provided that these 

lubricants have low vapor pressure. 

double-shielded bearings should be of some help i n  t h i s  respect. 

bearing experiments a t  pressures of  the  order of lom5 t o  loM6 Torr have 

been reported (refs.  3, 7, and 19  t o  22). 

Adequate sealing by the  use of 

Some 

Experiments on l iquid- o r  grease-lubricated bearings indicated tha t  

a chlorinated s i l icone o i l  or a grease made with the chlorinated s i l icone 

seemed t o  give re la t ive ly  good performance. 

by the authors of  references 2 1  t o  23  on ba l l  bearings tha t  incorporated 

Experiments were conducted 

self-lubricating containers. 

combinations of  Teflon with glass f ibe r  or with metals (ref. 21). 

re ta iners  were plated with th in  metallic films such as gold (ref. 22). 

Some of  these retainers  were made of various 

Other 
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Some studies were conducted with ball bearings larger than the normal in- 

strument size bearings; 20-millimeter-bore ball bearings were investigated 

by the authors of reference 23. 

had been vacuum impregnated with various types of oils. 

They used porous nonmetallic retainers that 

This type of 

bearing is lubricated by flow of uquid out of the parous retainer as the 

bearing operates. For these relatively large bearings, lubrication by the 

retainer impregnation technique was found to be somewhat inadequate under 

the conditions of their investigation. Their results indicated that the 

flow of lubricant out of the impregnated retainer was not fast enough to 

provide adequate lubrication. 

Tiros I1 Bearings and Seals 
11 An interesting application of the rolling-element bearings in a semi- 

sealed" system was made to the Tiros I1 satellite. 

satellite designed for relatively short-time operation. 

Tiros I1 is a weather 

The mechanism for 

I? the satellite was a . . 5-channel radiometer. . [this] system consists 

of five optical mirrors mounted on five gears and eight ball bearings. . 11 . 
A schematic of the system is shown in figure 19. 

bearings were rather severe: 

was necessary, (2 )  low starting and running torque, and (3) reliability. 

Output torque of the motor driving the five mirrors (through gearing) and 

The requirements for the 

(1) precise alignment of the optical mirror 

etght ball bearings was only 0.03 inch-ounce. This entire mechanism was 

designed by using the principle of 'hzolecular flow" seals. 

rubbing seals for which the leakage can be calculated precisely by utilizing 

These are non- 

the kinetic theory of gases and the Knudsen principle. 

The radiometer spindle assembly described in reference 7 was 

destgned on the basis of minimum loss of lubricant by evaporation. This 
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design was based on the f a c t  that ,  on a molecular scale, even smooth 

surfaces appear rough, and according t o  Knudsen (ref. 24), the  direction 

i n  which a molecule rebounds after a collison with a w a l l  i s  s t a t i s t i c a l l y  

independent of the angle of incidence. 

flow resistance of  small or i f ices  can be made re la t ive ly  high. 

For t h i s  reason, the  molecular 

The vapor 

pressure inside the chamber can be maintained, and vaporization of the 

lubricant can be minimized. 

The bearings i n  the mechanism i n  reference 7 were so designed t o  

employ lubricant reservoirs of oil-impregnated sintered nylon (f ig .  19). 

The lubricant employed was  a Mil-L-6085A diester o i l  with a vapor pres- 

sure of approximately lo’* Torr. 

value below 

the small clearance. The clearance was maintained a t  a nominal 0.10005 

When the outside pressure reaches a 

Torr, molecular f low occurs around the shaf t  through 

inch. Weinreb indicates that, with the a id  of an equation derived by 

Knudsen and others, it is possible t o  calculate the  escape r a t e  of o i l  

from the bearing assembly. This information can then be used t o  design 

a bearing fo r  space application fo r  the required l i f e .  

th i s  approach w a s  confirmed since Tiros I1 operated successfully f o r  

approximately 9400 hours. 

The va l id i ty  of 

SUMMARY 

It can be s ta ted tha t  actual  conditions of space are not precisely 

known; duplication of conditions is  therefore d i f f i cu l t ,  but simulation 

is possible. 

i s  lo” Torr  o r  less. 

The desirable pressure leve l  fo r  lubrication experiments 

Evaporation rate of  materials i s  very important 

since evaporation w i l l  remove the  contaminating (lubricant) films from 
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the  surface permitting contact of  clean surface and, hence, severe wear 

and fr ic t ion.  

(s i lver ,  t i n ,  gallium), some lubricating compounds (MoS2, F'bO, 

CaF2), as w e l l  as with Teflon. 

various lubricant coatings i n  vacuum show that MoS2 ,and other films 

(various compounds, plated metals, etc. ) appear promising; of these 

Low evaporation ra tes  are obtained with some metals 

Friction and w e a r  experiments with 

MoS2 showed the lowest f r i c t ion  and wear over short  time periods. 

Experiments with instrument s i ze  bearings i n  vacuum show good resu l t s  

w i t h  s i l icones and s i l icone greases as the lubricant. 

have been done with self-lubricating cages o r  retainers,  and reasonably 

succesgful operation has been obtained. 

a mechanism w a s  obtained on an actual  s a t e l l i t e  (Tim s 11). 

was based on controlled loss of  lubricant from a reservoir; th i s  con- 

Other experiments 

Successful operation i n  space of  

Lubrication 

t ro l led  loss w a s  precalculated on the basis of a "molecular flow resis- 

tan ce " e quat i on. 

Finally, vacuum f r i c t i o n  studies have been proved useful t o  explore 

effects  normally hidden because of the usual presence of oxides i n  air. 

An example of th i s  i s  c rys ta l  structure. The resu l t s  i n  vacuum show 

tha t  hexagonal structures frequently showed be t t e r  f r i c t iona l  groperties 

than cubic structures. The controlling variable fo r  the  f r i c t ion  of 

hexagonal metals appears t o  be the  l a t t i c e  r a t i o  c/a. Improvement i n  

the f r i c t iona l  properties of a normally poor f r ib t ion  matejiiaJ.,it%tanT~, 

were obtained by alloying the  titanium w i t h  either aluminum o r  t i n  i n  

order t o  increase the  c/a ra t io .  The binary alloys of  titanium with 

aluminum or t i n  showed increases i n  the 

decreases i n  both f r i c t i o n  coefficients and surface welding tendencies. 

c/a r a t i o  and appreciable 
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